Descriere YEO:
Text Mining with R: A - Disponibil la elefant.ro
Pe YEO găsești Text Mining with R: A de la O\'Reilly Media, în categoria Foreign Books.
Indiferent de nevoile tale, Text Mining with R: A Tidy Approach, Paperback/Julia Silge din categoria Foreign Books îți poate aduce un echilibru perfect între calitate și preț, cu avantaje practice și moderne.
Preț: 195.99 Lei
Caracteristicile produsului Text Mining with R: A
- Brand: O\'Reilly Media
- Categoria: Foreign Books
- Magazin: elefant.ro
- Ultima actualizare: 21-12-2024 01:38:29
Comandă Text Mining with R: A Online, Simplu și Rapid
Prin intermediul platformei YEO, poți comanda Text Mining with R: A de la elefant.ro rapid și în siguranță. Bucură-te de o experiență de cumpărături online optimizată și descoperă cele mai bune oferte actualizate constant.
Descriere magazin:
Much of the data available today is unstructured and text-heavy, making it challenging for analysts to apply their usual data wrangling and visualization tools. With this practical book, you\'ll explore text-mining techniques
with tidytext, a package that authors
Julia Silge and David Robinson developed using the tidy principles behind R packages like ggraph and dplyr . You\'ll learn how tidytext and other tidy tools in R can make text analysis easier and more effective. The authors demonstrate how treating text as data frames enables you to manipulate, summarize, and visualize characteristics of text. You\'ll also learn how to integrate natural language processing (NLP) into effective workflows. Practical code examples and data explorations will help you generate real insights from literature, news, and social media. Learn how to apply the tidy text format to NLP Use sentiment analysis to mine the emotional content of text Identify a document\'s most important terms
with frequency measurements Explore relationships and connections between words
with the ggraph and widyr packages Convert back and forth between R\'s tidy and non-tidy text formats Use topic modeling to classify document collections into natural groups Examine case studies that compare Twitter archives, dig into NASA metadata, and analyze thousands of Usenet messages