Descriere YEO:
Pe YEO găsești Connectionist Symbol Processing - Geoffrey de la Geoffrey Hinton, în categoria Computers.
Indiferent de nevoile tale, Connectionist Symbol Processing - Geoffrey Hinton din categoria Computers îți poate aduce un echilibru perfect între calitate și preț, cu avantaje practice și moderne.
Preț: 195.3 Lei
Caracteristicile produsului Connectionist Symbol Processing - Geoffrey
- Brand: Geoffrey Hinton
- Categoria: Computers
- Magazin: libris.ro
- Ultima actualizare: 02-11-2024 01:25:46
Comandă Connectionist Symbol Processing - Geoffrey Online, Simplu și Rapid
Prin intermediul platformei YEO, poți comanda Connectionist Symbol Processing - Geoffrey de la libris.ro rapid și în siguranță. Bucură-te de o experiență de cumpărături online optimizată și descoperă cele mai bune oferte actualizate constant.
Descriere magazin:
Addressing the current tension within the artificial intelligence community between advocates of powerful symbolic representations that lack efficient learning procedures and advocates of relatively simple learning procedures that lack the ability to represent complex structures effectively. The six contributions in
Connectionist Symbol Processing address the current tension within the artificial intelligence community between advocates of powerful symbolic representations that lack efficient learning procedures and advocates of relatively simple learning procedures that lack the ability to represent complex structures effectively. The authors seek to extend the representational power of connectionist networks without abandoning the automatic learning that makes these networks interesting.Aware of the huge gap that needs to be bridged, the authors intend their contributions to be viewed as exploratory steps in the direction of greater representational power for neural networks. If successful, this research could make it possible to combine robust general purpose learning procedures and inherent representations of artificial intelligence--a synthesis that could lead to new insights into both representation and learning.