Descriere YEO:
Pe YEO găsești Deep Learning for Finance: Creating de la Sofien Kaabar, în categoria Computers.
Indiferent de nevoile tale, Deep Learning for Finance: Creating Machine & Deep Learning Models for Trading in Python - Sofien Kaabar din categoria Computers îți poate aduce un echilibru perfect între calitate și preț, cu avantaje practice și moderne.
Preț: 390.55 Lei
Caracteristicile produsului Deep Learning for Finance: Creating
- Brand: Sofien Kaabar
- Categoria: Computers
- Magazin: libris.ro
- Ultima actualizare: 28-10-2025 01:22:05
Comandă Deep Learning for Finance: Creating Online, Simplu și Rapid
Prin intermediul platformei YEO, poți comanda Deep Learning for Finance: Creating de la libris.ro rapid și în siguranță. Bucură-te de o experiență de cumpărături online optimizată și descoperă cele mai bune oferte actualizate constant.
Descriere magazin:
Deep learning is rapidly gaining momentum in the world of finance and trading. But for many professional traders, this sophisticated field has a reputation for being complex and difficult. This hands-on guide teaches you how to develop a deep learning trading model from scratch using
Python, and it also helps you create, trade, and back-test trading algorithms based on machine learning and reinforcement learning.
Sofien Kaabar--financial author, trading consultant, and institutional market strategist--introduces deep learning strategies that combine technical and quantitative analyses. By fusing deep learning concepts with technical analysis, this unique book presents out-of-the-box ideas in the world of financial trading. This A-Z guide also includes a full introduction to technical analysis, evaluating machine learning algorithms, and algorithm optimization. Create and understand machine learning and deep learning models Explore the details behind reinforcement learning and see how it\'s used in trading Understand how to interpret performance evaluation metrics Examine technical analysis and learn how it works in financial markets Create technical indicators in
Python and combine them with ML models for optimization Evaluate the profitability and the predictability of the models to understand their limitations and potential