Foundations of Deep Reinforcement Learning: Theory and Practice in Python, Paperback/Laura Graesser

Foundations of Deep Reinforcement Learning: Theory and Practice in Python, Paperback/Laura Graesser

Detalii Foundations of Deep Reinforcement Learning:

elefant.ro
Vânzător
elefant.ro
Pret
305.99 Lei 306.99 Lei
Categorie (vânzător)
Foreign Books
Marca
Addison-Wesley Professional

Produs actualizat în urmă cu 1 lună
Descriere YEO:

Foundations of Deep Reinforcement Learning: - Disponibil la elefant.ro

Pe YEO găsești Foundations of Deep Reinforcement Learning: de la Addison-Wesley Professional, în categoria Foreign Books.

Indiferent de nevoile tale, Foundations of Deep Reinforcement Learning: Theory and Practice in Python, Paperback/Laura Graesser din categoria Foreign Books îți poate aduce un echilibru perfect între calitate și preț, cu avantaje practice și moderne.

Preț: 305.99 Lei

Caracteristicile produsului Foundations of Deep Reinforcement Learning:

  • Brand: Addison-Wesley Professional
  • Categoria: Foreign Books
  • Magazin: elefant.ro
  • Ultima actualizare: 21-12-2024 01:38:29

Comandă Foundations of Deep Reinforcement Learning: Online, Simplu și Rapid

Prin intermediul platformei YEO, poți comanda Foundations of Deep Reinforcement Learning: de la elefant.ro rapid și în siguranță. Bucură-te de o experiență de cumpărături online optimizată și descoperă cele mai bune oferte actualizate constant.


Descriere magazin:
The Contemporary Introduction to Deep Reinforcement Learning that Combines Theory and Practice Deep reinforcement learning (deep RL) combines deep learning and reinforcement learning, in which artificial agents learn to solve sequential decision-making problems. In the past decade deep RL has achieved remarkable results on a range of problems, from single and multiplayer games-such as Go, Atari games, and DotA 2-to robotics. Foundations of Deep Reinforcement Learning is an introduction to deep RL that uniquely combines both theory and implementation. It starts with intuition, then carefully explains the theory of deep RL algorithms, discusses implementations in its companion software library SLM Lab, and finishes with the practical details of getting deep RL to work. This guide is ideal for both computer science students and software engineers who are familiar with basic machine learning concepts and have a working understanding of Python. Understand each key aspect of a deep RL problem Explore policy- and value-based algorithms, including REINFORCE, SARSA, DQN, Double DQN, and Prioritized Experience Replay (PER) Delve into combined algorithms, including Actor-Critic and Proximal Policy Optimization (PPO) Understand how algorithms can be parallelized synchronously and asynchronously Run algorithms in SLM Lab and learn the practical implementation details for getting deep RL to work Explore algorithm benchmark results with tuned hyperparameters Understand how deep RL environments are designed Register your book for convenient access to downloads, updates, and/or corrections as they become available. See inside book for details. About the Author Laura Graesser is a research software engineer working in robotics at Google. She holds a master\'s degree in computer science from New York University, where she specialized in machine learning. Wah Loon Keng is an AI engineer at Machine Zone, where he applies deep reinforcement learning to industrial problems. He has a background in both theoretical physics and computer science.

Foundations of Deep Reinforcement Learning: Theory and Practice in Python, Paperback/Laura Graesser - 0 | YEO

Produse asemănătoare

Produse marca Addison-Wesley Professional