Machine Learning for Asset Managers, Paperback/Marcos M. L pez de Prado

Machine Learning for Asset Managers, Paperback/Marcos M. L pez de Prado

Detalii Machine Learning for Asset Managers,

elefant.ro
Vânzător
elefant.ro
Pret
145.99 Lei
Categorie (vânzător)
Foreign Books
Marca
Cambridge University Press

Produs actualizat în urmă cu 7 zile
Descriere YEO:

Machine Learning for Asset Managers, - Disponibil la elefant.ro

Pe YEO găsești Machine Learning for Asset Managers, de la Cambridge University Press, în categoria Foreign Books.

Indiferent de nevoile tale, Machine Learning for Asset Managers, Paperback/Marcos M. L pez de Prado din categoria Foreign Books îți poate aduce un echilibru perfect între calitate și preț, cu avantaje practice și moderne.

Preț: 145.99 Lei

Caracteristicile produsului Machine Learning for Asset Managers,

  • Brand: Cambridge University Press
  • Categoria: Foreign Books
  • Magazin: elefant.ro
  • Ultima actualizare: 14-12-2024 01:34:24

Comandă Machine Learning for Asset Managers, Online, Simplu și Rapid

Prin intermediul platformei YEO, poți comanda Machine Learning for Asset Managers, de la elefant.ro rapid și în siguranță. Bucură-te de o experiență de cumpărături online optimizată și descoperă cele mai bune oferte actualizate constant.


Descriere magazin:
Successful investment strategies are specific implementations of general theories. An investment strategy that lacks a theoretical justification is likely to be false. Hence, an asset manager should concentrate her efforts on developing a theory rather than on backtesting potential trading rules. The purpose of this Element is to introduce machine learning (ML) tools that can help asset managers discover economic and financial theories. ML is not a black box, and it does not necessarily overfit. ML tools complement rather than replace the classical statistical methods. Some of ML\'s strengths include (1) a focus on out-of-sample predictability over variance adjudication; (2) the use of computational methods to avoid relying on (potentially unrealistic) assumptions; (3) the ability to "learn" complex specifications, including nonlinear, hierarchical, and noncontinuous interaction effects in a high-dimensional space; and (4) the ability to disentangle the variable search from the specification search, robust to multicollinearity and other substitution effects.

Machine Learning for Asset Managers, Paperback/Marcos M. L pez de Prado - 0 | YEO

Produse asemănătoare

Produse marca Cambridge University Press