Machine Learning for Physics and Astronomy - Viviana Acquaviva

Machine Learning for Physics and Astronomy - Viviana Acquaviva

Detalii Machine Learning for Physics and

libris.ro
Vânzător
libris.ro
Pret
353.4 Lei 441.75 Lei
Categorie (vânzător)
Science
Marca
Viviana Acquaviva

Produs actualizat în urmă cu 3 luni
Descriere YEO:

Machine Learning for Physics and - Disponibil la libris.ro

Pe YEO găsești Machine Learning for Physics and de la Viviana Acquaviva, în categoria Science.

Indiferent de nevoile tale, Machine Learning for Physics and Astronomy - Viviana Acquaviva din categoria Science îți poate aduce un echilibru perfect între calitate și preț, cu avantaje practice și moderne.

Preț: 353.4 Lei

Caracteristicile produsului Machine Learning for Physics and

  • Brand: Viviana Acquaviva
  • Categoria: Science
  • Magazin: libris.ro
  • Ultima actualizare: 25-10-2024 01:12:27

Comandă Machine Learning for Physics and Online, Simplu și Rapid

Prin intermediul platformei YEO, poți comanda Machine Learning for Physics and de la libris.ro rapid și în siguranță. Bucură-te de o experiență de cumpărături online optimizată și descoperă cele mai bune oferte actualizate constant.


Descriere magazin:
A hands-on introduction to machine learning and its applications to the physical sciences As the size and complexity of data continue to grow exponentially across the physical sciences, machine learning is helping scientists to sift through and analyze this information while driving breathtaking advances in quantum physics, astronomy, cosmology, and beyond. This incisive textbook covers the basics of building, diagnosing, optimizing, and deploying machine learning methods to solve research problems in physics and astronomy, with an emphasis on critical thinking and the scientific method. Using a hands-on approach to learning, Machine Learning for Physics and Astronomy draws on real-world, publicly available data as well as examples taken directly from the frontiers of research, from identifying galaxy morphology from images to identifying the signature of standard model particles in simulations at the Large Hadron Collider. Introduces readers to best practices in data-driven problem-solving, from preliminary data exploration and cleaning to selecting the best method for a given task Each chapter is accompanied by Jupyter Notebook worksheets in Python that enable students to explore key concepts Includes a wealth of review questions and quizzes Ideal for advanced undergraduate and early graduate students in STEM disciplines such as physics, computer science, engineering, and applied mathematics Accessible to self-learners with a basic knowledge of linear algebra and calculus Slides and assessment questions (available only to instructors)

Machine Learning for Physics and Astronomy - Viviana Acquaviva - 0 | YEO

Produse asemănătoare

Produse marca Viviana Acquaviva